Practical Concerns and Solutions in Integrated High-Resolution ADCs

揭路
清华大学
High Resolution ADC Needs

- General specifications
 - High SNDR: $>90\text{dB}$
 - High efficiency: $>175\text{dB FoMs}$
 - Med-low speed: kHz \sim MHz BW

IoT Devices
Sensor Readout
Biomedical
Acoustic
Varieties of Solutions Exist

• General specifications
 • High SNDR: >90dB
 • High efficiency: >175dB FoMs
 • Med-low speed: kHz ~ MHz BW

[Graph showing performance metrics for different ADC types]

[B. Murmann, “ADC Survey” Jun 2021]
Problem Solved?

• High **SNDR** and **FoM** – Achieved

• Higher **BW** – on the way

• But we concern **MORE** in practice!
 • Especially for integrated ADC IP

E.g. Wearable devices, IoT, smart sensing…
Process and Area Concerns

- Many **advanced** high-resolution ADCs are made in **old process**
 - And they are large too
- But SoC prefers **advanced process**

![Published high-resolution ADCs](image)

[B. Murmann, “ADC Survey” Jun 2021]
Driving Effort

- Driving high-resolution Nyquist ADC is a big challenge
 - C_s is large for low KT/C

- Oversampling does not fully relax driving effort
 - Need to charge C_s faster
Nyquist And Single-End Capability

- Many applications need a “Nyquist” ADC
 - Support single-shot conversion
 - Support multiplexing

- Single-ended capability is also desired
 - Compatible with various input formats
 - i.e., a high full-scale CMRR
And More …

• **Decoupling**
 • Many high-resolution ADCs heavily rely on *large decaps*
 • Typically for stabilizing / denoise references
 • E.g. SAR ADC

• **Calibration and trimming**
 • Foreground calibration / trimming increases *testing cost*
 • Background calibration / DEM increases *P/A cost*

• **PVT robustness**
 • Sometimes ignored by academic designs

…
The Complete Wish List

- High SNDR and FoM → ✔ Lots of solutions

Practical Features:
- Advanced process compatible → ✗ OTA, high swing -> more digital?
- Low area
- Easy driving
- Nyquist capable
- Single-ended capable
- Easy decoupling
- Calibration / trimming free
- PVT Robust

…

- SAR / pipe -> oversampling? KT/C cancel?
- DSM -> Incremental?
- CT-DSM ?
- Open loop based ?
The Complete Wish List

✓ High SNDR and FoM

Practical Features:
✓ Advanced process compatible
✓ Low area
✓ Easy driving
✓ Nyquist capable
✓ Single-ended capable
✓ Easy decoupling
✓ Calibration free
✓ PVT Robust

…
Practical Concerns and Solutions in Integrated High-Resolution ADCs

The “Zoom” Framework

- **Slow coarse stage + single-bit DSM**
 - ✓ Effectively multi-bit
 - ✓ Inherent linear DSM
 - ✓ Low DAC toggle rate
 - ✓ Small input to LF
 - ✗ DAC mismatch unsolved
 - ✗ Only works for DC
 - ✗ Massive SC input sampling

![Diagram of the “Zoom” Framework](image)

\[F_{CLK} = \text{OSR} \times F_S\]
Mismatch Error in DAC

- Mismatch error in DAC brings nonlinearity

Thermometer DAC (2bits)

<table>
<thead>
<tr>
<th>Activation Map</th>
<th>Time</th>
<th>Mean Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4</td>
<td>4</td>
<td>E1</td>
</tr>
<tr>
<td>E3</td>
<td>1</td>
<td>E1</td>
</tr>
<tr>
<td>E2</td>
<td>3</td>
<td>E1+E2+E3</td>
</tr>
<tr>
<td>E1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Mismatch Error (E1)

Mean Error

\[E \propto D_{IN} \rightarrow \text{Distortion} \]
The "Real Time" (RT) DEM

• Circulate the elements step-by-step for a complete round

<table>
<thead>
<tr>
<th>Activation Map</th>
<th>Thermometer DAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>D_{IN}</td>
</tr>
<tr>
<td>E4</td>
<td>E3</td>
</tr>
<tr>
<td>E3</td>
<td>E3</td>
</tr>
<tr>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>E1</td>
<td>E1</td>
</tr>
</tbody>
</table>

| RT-DEM DAC |
D_{IN}	E4	E4	E4	E4	E4
E4	E3	E3	E3	E3	E3
E3	E3	E2	E2	E2	E2
E2	E2	E2	E2	E2	E2
E1	E1	E1	E1	E1	E1

Error ∝ D_{IN} ⟷ Distortion

Mean Error

\[\text{Mean Error} = \frac{(E_1 + E_2 + E_3 + E_4)}{4} \]

Linear gain error

\[\text{Error} \propto D_{IN} \]
The “Real Time” (RT) DEM

- Remove mismatch completely
- Simple implementation

![Diagram of RT-DEM DAC]

<table>
<thead>
<tr>
<th>E4</th>
<th>E4</th>
<th>E4</th>
<th>E4</th>
<th>E4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3</td>
<td>E3</td>
<td>E3</td>
<td>E3</td>
<td>E3</td>
</tr>
<tr>
<td>E2</td>
<td>E2</td>
<td>E2</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>E1</td>
<td>E1</td>
<td>E1</td>
<td>E1</td>
<td>E1</td>
</tr>
</tbody>
</table>

\[\text{Error } \propto D_{\text{IN}} \rightarrow \text{Linear gain error} \]
The “Real Time” (RT) DEM

✓ Remove mismatch completely
✓ Simple implementation

• Limitations
 - High OSR
 - 1st-order IDSM

OK for advanced process

Evenly weighted
Decoupled Stages with RT-DEM

- Simple hardware
- Completely remove mismatch
- Low toggle rate
- Code independent ripple

? Cannot track AC
Introduce Tracking Mechanism

- Simple hardware
- Completely remove mismatch
- Low toggle rate
- Code independent ripple
- Tracks input
- Gain calibration free
✓ Simple hardware
✓ Completely remove mismatch
✓ Low toggle rate
✓ Code independent ripple
✓ Tracks input
✓ Gain calibration free

? Needs complicated B2T

- What is the simplest ADC providing “thermometer” output?
Simplest – Counting ADC

- Ramp DAC’s output till V_{IN}
- Count the steps of ramping

✓ Reusing the DEM and DAC
 ✓ No B2T!
 ✓ Low power
 ✓ Compact
Even Simpler – Comparator Reuse

- Ramp DAC’s output till V_{IN}
- Count the steps of ramping

✓ Reusing all hardware
 ✓ No B2T!
 ✓ Low power
 ✓ Even more compact!

![Diagram of comparator reuse](image-url)
Switch to Continuous-Time

- **Gm-C loop filter (integrator)**
 - Fast, settling free
 - High efficiency
 - Linearity relaxed by small input
 - Low swing - scaling friendly

- **Cap-coupled input**
 - Easy driven
 - kT/C noise free
“Zoom of Incremental + Counting” (ZIC)

✓ High SNDR
✓ Good scalability
✓ Small and simple
✓ Easy driving
✓ Stable Vref ripple
✓ Nyquist capable
✓ Calibration free
✓ PVT Robust
Input Network Concern

- Cap coupling – easy driving
- Cannot accept DC input

\[C_U = 12.5fF \]
\[C_{IN} = 132C_U \]
Input Network Concern

- Cap coupling – easy driving
- Reset during idle
 ✓ Reset to $V_{IN,CM}$ gives great CMRR
 × Induce kT/C noise

Half 0, half 1 @ Φ_{IDLE}
(effectively V_{CM})

Cap coupling – easy driving
Reset during idle
- Reset to $V_{IN,CM}$ gives great CMRR
- Induce kT/C noise

Half 0, half 1 @ Φ_{IDLE} (effectively V_{CM})
Input Network Concern

- Cap coupling – easy driving
- Reset during idle
- Apply chopping – kT/C is DC error
 ✓ Also suppress flicker noise and leakages
Input Network Concern

- Cap coupling – easy driving
- Reset during idle
- Apply chopping
 - $V_{IN,CM} = (V_{IN}^+ + V_{IN}^-)/2$
 - Sample both V_{IN} on split C_{IN}
 - Chopping is embedded

[H. Wang, ISSCC’17]
Full Schematic

Gm reused as a pre-amplifier
✓ Suppress comparator offset

Comparator don’t care integrator gain
✓ Inherently PVT robust

4-tap FIR DAC
✓ Small swing
✓ Jitter insensitive

- V_IN+
- V_IN-
V_REF+
V_IN+
V_REF−
V_IN−

Chopper (XOR)
Circular Shifter
FIR

GND

Φ
DSM

Φ
CNT

V_DD

FIR

CNT
(14b)

DSM

D
INT
(14b)

D
OUT

Count

Shifter

Control

Intergrator

7

x32

V_INT

DCS

V裒

7

V_TOP
Dynamic Power Concern

-market concerns and solutions in integrated high-resolution ADCs

-Only two DFFs are flipping at each DEM step

-Weak Latch

-Minimum size

-DAC[1]

-DAC[128]

-Loop

-7x DFF

-FIR

-Circular Shift Register

-Connectors

-Minimum size comparator

-Small gate count $\rightarrow \sim 100uW @ 500M F_{CLK}$

-Can be further reduced in advanced process

-Divider chain

-DAC[1]

-DAC[128]

-CNT_{DSM}

-CNT_{Track}
Clock Generation Concern

- The 500MHz clock sounds costly to generate? - Not really
 - ✓ Loose jitter requirement: 3ps rms for 105dB
 - ✓ Loose frequency precision: even ±20% F_{CLK} is tolerable

- A “crappy” free-running relaxation oscillator* is enough
 - ~200uW @ 500M (post sim)
 - 10x40um
 - No trimming needed

*Not used in actual measurement
Prototype ADC

- 28nm CMOS
- Core Area: 90x160 um²

28nm CMOS
Core Area: 90x160 um²
Single-Tone Test @20kS/s

2^{16}-FFT, 16x Averaged

SNDR = 102.9dB (16.8bit)
SFDR = 113.6dB

-0.7dB @ 2.3kHz

SNDR = 99.1dB (16.2bit)
SFDR = 113.9dB

(Tracking slope limited) -7.0dB @ 9.9kHz
CMRR and Single-Ended Input

- **CMRR**
 - >105dB full-scale CMRR @100Hz
 - 80dB CMRR up to 10kHz

- **SNDR**
 - 95.1dB (15.5bit)

- **SFDR**
 - 101.0dB

- **PSD**
 - -7.3dB @ 2.3kHz (SE input)

- **AC line**
Practical Concerns and Solutions in Integrated High-Resolution ADCs

PVT Measurements

SNDR\text{ \textsubscript{raw}} = 101.7 \text{ dB}

SNDR\text{ \textsubscript{cal}} = 102.0 \text{ dB}

No need to cal. in practice!
SOTA Design Comparison

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Process (nm)</th>
<th>Area (mm²)</th>
<th>Supply (V)</th>
<th>OSR</th>
<th>F_s,nyq (kS/s)</th>
<th>Power (mW)</th>
<th>SNDR (dB)</th>
<th>FOM_s (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>28</td>
<td>0.014</td>
<td>0.9 / 1.2</td>
<td>2¹⁴</td>
<td>2¹³</td>
<td>0.47</td>
<td>102.9</td>
<td>176.2</td>
</tr>
<tr>
<td>ISSCC’22</td>
<td>160</td>
<td>0.27</td>
<td>1.8</td>
<td>87.5</td>
<td>40</td>
<td>0.59</td>
<td>100.1</td>
<td>176.4</td>
</tr>
<tr>
<td>VLSI’20</td>
<td>65</td>
<td>0.134</td>
<td>1.2</td>
<td>256</td>
<td>40</td>
<td>0.44</td>
<td>106.5</td>
<td>183.1</td>
</tr>
<tr>
<td>VLSI’18</td>
<td>65</td>
<td>0.39</td>
<td>1.2</td>
<td>150</td>
<td>48</td>
<td>0.55</td>
<td>100.8</td>
<td>176.4</td>
</tr>
<tr>
<td>ISSCC’21</td>
<td>180</td>
<td>0.78</td>
<td>1.8 / 5</td>
<td>1</td>
<td>2000</td>
<td>0.14</td>
<td>100.9</td>
<td>183.3</td>
</tr>
<tr>
<td>ISSCC’22</td>
<td>40</td>
<td>0.061</td>
<td>1.1</td>
<td>25</td>
<td>80</td>
<td>8.5</td>
<td>105.3</td>
<td>186.0</td>
</tr>
<tr>
<td>ISSCC’20</td>
<td>40</td>
<td>0.061</td>
<td>1.1</td>
<td>25</td>
<td>80</td>
<td>8.5</td>
<td>105.3</td>
<td>186.0</td>
</tr>
</tbody>
</table>

- Includes decimation filter.
- FOM_s (dB) includes decimation filter.
Practical Features

<table>
<thead>
<tr>
<th>Architecture</th>
<th>ISSCC’22 This work</th>
<th>VLSI’20 E. Elan</th>
<th>VLSI’18 B. Wang</th>
<th>ISSCC’21 S. Mondal</th>
<th>ISSCC’22 J. Steensgaard</th>
<th>ISSCC’20 J. Liu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom (Cnt’ + CT-IDSM)</td>
<td>Zoom (SAR + DT-DSM)</td>
<td>DT-IDSM</td>
<td>CT-DSM</td>
<td>Multi-step SAR</td>
<td>NS-SAR</td>
<td></td>
</tr>
<tr>
<td>Full-Scale CMRR @ DC</td>
<td>>100dB</td>
<td>>100dB</td>
<td>Not Support</td>
<td>Not Support</td>
<td>140dB</td>
<td>Not Support</td>
</tr>
<tr>
<td>Multiplexing / Single-Shot</td>
<td>Incremental</td>
<td>Not Support</td>
<td>Incremental</td>
<td>Not Support</td>
<td>Nyquist Sampling</td>
<td>Not Support</td>
</tr>
<tr>
<td>PVT</td>
<td>Stable</td>
<td>Stable</td>
<td>Stable</td>
<td>Not Report</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>Mismatch Solution</td>
<td>RT-DEM</td>
<td>DWA</td>
<td>DWA</td>
<td>1bit-DAC</td>
<td>Cal. + DEM</td>
<td>MES</td>
</tr>
<tr>
<td>Input Network</td>
<td>Cap Coupling</td>
<td>Switched Cap</td>
<td>Switched Cap</td>
<td>Resistive</td>
<td>Switched Cap</td>
<td>Switched Cap</td>
</tr>
</tbody>
</table>
Area & Process Highlight

[B. Murmann, “ADC Survey” Jun 2021]
Conclusion

• **Prototype Highlights:**

 • Smallest for 90+dB SNDR

 • Highest SNDR for 28nm

 • Nyquist and single-end capability

• **Suggestions for designing integrated high-resolution ADC**

 • Always consider the deployment in practice

 • Take advantage of fast digital (e.g. high OSR)

 • Simple analog circuitry is preferred

 • Architecture hybridization is promising
Thanks!

Q&A