Fully Passive Noise-Shaping SAR ADC with $4 \times$ Passive Gain and 2nd-Order Mismatch Error Shaping

Jiaxin Liu

University of Electronic Science and Technology of China

Outline

Introduction

✤ NS SAR with 4× Passive Gain

- ✤ 2nd-Order MES with Digital Prediction
- ***** ADC Architecture and Measurement Results

Conclusion

High-Resolution ADC Challenges

- To achive high resolution (e.g. >90dB SNDR)
- SAR ADC
 - -Scaling friendly 🙂
 - -Excellent power efficiency with medium resolution 🙂
 - –Comparator noise: $4 \times$ power increase for 6dB noise reduction \otimes
 - -CDAC mismatch: need costly calibration 😕
- $\Delta\Sigma ADC$
 - -Suppress comparator noise by noise shaping 🙂
 - -Address CDAC mismatch by DWA 🙂
 - -Need power hungry OTAs 😕
 - -Unfriendly to advanced process 😕

Proposed Solution

- Enable high resolution (>90dB SNDR)
- Maintian scaling friendliness, high power efficiency and PVT robustness
 - –Comparator noise → Fully passive noise shaping (NS) SAR ★
 - -CDAC mismatch \rightarrow 2nd-order mismatch error shaping (MES) \star

Outline

Introduction

NS SAR with 4× Passive Gain

- Review
- Proposed NS SAR
- Comparison
- ✤ 2nd-Order MES with Digital Prediction
- ADC Architecture and Measurement Results

Conclusion

NS SAR ADC

- SAR + $\Delta\Sigma \rightarrow$ low cost + high resolution
- Key is NS filter ★
 - -Aggressive NS
 - -Low power, low area, and robust

NS Filter Approaches

- Sharp NTF 🙂
- PVT robust 🙂
- High power 😕
- Scaling unfriendly 😕

- Sharp NTF 🙂
- Low power 🙂
- Scaling friendly 🙂
- PVT sensitive 😕

[Chen, VLSI 2015] [Guo, ESSCIRC 2016] [Lin, ISSCC 2019]

- Low power 🙂
- PVT robust 🙂
- Scaling friendly 🙂
- Signal attenuation 😕

Prior Passive NS SAR #1

- Residue sampling
 - −Small C_{res} (C/4) → Large kT/C noise (18.7kT/C) \bigotimes
- Dynamic summation \rightarrow need multi-input-pair comparator
 - -1:5 2-input pair comp. \rightarrow 36 \times comparator input referred noise power \otimes

Prior Passive NS SAR #2

- Remove residue sampling
 - -Reduced kT/C noise (3.6kT/C) 🙂
- Dynamic summation \rightarrow Need multi-input-pair comparator
 - -1:4 2-input pair comp. \rightarrow 25 \times comparator input referred noise power \otimes
 - -Large integration cap. \rightarrow 10C total cap. \otimes

 $NTF = 1 - 0.8z^{-1}$

Prior Passive NS SAR #3

- Passive summation and passive gain of 2
 - -1-input-pair comparator \rightarrow reduced comparator input referred noise \bigcirc
 - −Mild NTF zero of z=0.5 😕
- Extra residue sampling with Cres
 - -Large kT/C noise (~20kT/C) 😕

Proposed Passive NS SAR

- Remove residue sampling
 - -Low kT/C noise, same with #2 🙂
- Differential integration instead of signle-ended integration

 $-4 \times$ reduction of total integration cap. \bigcirc

Proposed Passive NS SAR

- Split and stack
 - $-4 \times$ passive gain \rightarrow NTF zero at 0.8 \bigcirc
 - -Passive summation \rightarrow Only 1-input-pair comp. \bigcirc

kT/C Noise during Split-and-Stack

$$i_{n1} + i_{n2} + i_{n3} + i_{n4} = 0$$

$$C_{1} \frac{dv_{n1}}{dt} + C_{2} \frac{dv_{n2}}{dt} + C_{3} \frac{dv_{n3}}{dt} + C_{4} \frac{dv_{n4}}{dt} = 0$$
 • Split noises are cancelled out

$$v_{n1} + v_{n2} + v_{n3} + v_{n4} = 0$$

Comparison of Passive NS SAR Works

• For the same CDAC capacitor (C) and the same comp. power budget

	Total capacitor	Total kT/C noise	Passive gain	Multi-path comp.	Comp. input ref. noise	NTF zero location
Prior work #1	4.5C	18.7 kT/C	No	Yes	36x	0.8
Prior work #2	10C	3.6 kT/C	No	Yes	25x	0.8
Prior work #3	2.4C	20 kT/C	2	No	2.8x	0.5
This work	4C	3.6 kT/C	4	No	1x	0.8

Outline

- Introduction
- NS SAR with 4× Passive Gain
- * 2nd-Order MES with Digital Prediction
 - Prior 1st-order MES
 - Proposed 2nd-order MES
 - Digital prediction
- ADC Architecture and Measurement Results
- Conclusion

Capacitor Mismatch in SAR ADC

Classic DAC Mismatch Solution - DWA

- Usually used in $\Delta\Sigma$ ADCs
- Drawbacks:
 - -Hardware cost grows exponentially with the number of bits
 - -Usually applicable for <5-bit DACs

Capacitor uasge pattern of DWA

ISSCC Short Course

1st-Order MES

- Operation principle
 - -Feed back E(n-1) to the input

1st-Order MES Implementation

Low hardware complexity, suit for high-bit DACs

1st-Order MES

- Reduce distortion 🙂
- Signal-dependent tones 😕

Extend MES to 2nd-Order

• Operation principle

-Feed back 2E(n-1)-E(n-2) to the input

Try to Implement 2nd-Order MES

Proposed 2nd-Order MES Implementation

 $E_{tot}(2k-1) = -E(2k-1) + 2E(2k-2) - E(2k-3)$

[Liu, ISSCC 2020]

Proposed 2nd-Order MES Implementation

 $E_{tot}(2k) = -E(2k) + 2E(2k-1) - E(2k-2) \rightarrow E_{tot}(z) = -(1-z^{-1})^2 \cdot E(z)$

Proposed 2nd-Order MES

Signal Range Loss Caused by MES

• Injected V_{LSBs} eats up input range

Allowable Input Signal Range

Recover Signal Range

Digital Prediction

Allowable Input Signal Range with Prediction

Outline

- Introduction
- NS SAR with 4× Passive Gain
- ✤ 2nd-Order MES with Digital Prediction
- *** ADC Architecture and Measurement Results**
- Conclusion

Overall ADC Architecture

- Use DWA to average MSB cells
- Use 2b equally weighted MSB to simplify DWA

Die Photo

- 40nm LP CMOS
- 0.06mm² active area
- 67.4uW power

Measured Spectrum Before MES

Measured Spectrum After 2nd-Order MES

Comparison Between 1st- and 2nd-Order MES

Comparison Between 1st- and 2nd-Order MES

Performance Summary and Comparison

	This work		ISSCC 16		ISSCC 17	ISSCC 18	ISSCC 19
			Shu [4]		Liu [3]	Li	Lin [2]
Process	40nm		55nm		28nm	40nm	14nm
Architecture	Passive NS SAR		Active NS SAR		DA-based NS SAR	DA-based NS SAR	Passive NS SAR
Fs (MS/s)	2		1		132	10	320
Power (uW)	67.4		15.7		460	84	1250
OSR	25	100	125	500	13.2	8	4
BW (kHz)	40	10	4	1	5000	625	40000
SFDR (dB)	102.2	102.2	105.1	105.1	92.6	89	77.4
SNDR (dB)	90.5	95.3	96.1	101	79.7	79	66.6
FoM _{SNDR} (dB)	178.2	177	180	178.9	180.1	178	171.7
FoM _{DR} (dB)	182	180.2	-	179.6	182.2	179.5	-

Conclusion

- Fully Passive NS SAR ADC with 4imes passive gain
 - -Reduced kT/C noise
 - -Reduced comparator input referred noise
- 2nd-order MES with digital prediction
 - -Aggressive mismatch shaping capability
 - -Support full-swing input signals
- 40nm CMOS ADC prototype
 - -Fully dynamic, PVT robust, calibration-free
 - -Highest resolution among passive NS SARs

Thanks for your Attention!